
Dan Luksetich is a senior DB2 DBA consultant. He works as a DBA, application architect,
presenter, author, and teacher. Dan has been in the information technology business for
over 30 years, and has worked with DB2 for over 25 years. He has been a COBOL and BAL
programmer, DB2 system programmer, DB2 DBA, and DB2 application architect. His
experience includes major implementations on z/OS, AIX, i Series, and Linux environments.

Dan's experience includes:

Application design and architecture
Database administration
Complex SQL
SQL tuning
DB2 performance audits
Replication
Disaster recovery
Stored procedures, UDFs, and triggers
Dan works everyday on some of the largest and most complex DB2 implementations in the
world. He is a certified DB2 DBA, system administrator, and application developer, and has
work on the teams that have developed the DB2 for z/OS certification exams. He is the
author of several DB2 related articles as well as co-author of the DB2 9 for z/OS
Certification Guide and the DB2 10 for z/OS Certification Guide.

Daniel L Luksetich

8/16/2015 Presented at SQLAdria

8/16/2015

Daniel L Luksetich

Presented August 2015

8/16/2015

Daniel L Luksetich

Presented August 2015

4 Daniel L Luksetich

8/16/2015 Presented at SQLAdria

Data volume is increasing at a tremendous rate, and business and regulatory
demands are driving the need to maintain large volumes of data, as well as multiple
versions of data. Flexibility in an application design is important, especially in the
era of the ever expanding internet where adaptability and flexibility dictate whether
or not a product, business, or strategy will succeed. We can now stored extremely
large volumes of data relatively cheaply, and collecting this data over time can give
businesses a tremendous advantage. Being able to quickly access historical
information, or query changes to data can allow us to answer complex questions
very quickly.

There is a lot of responsibility in managing these large quantities of data and
maintaining efficiency and accuracy. Having a strong temporal policy will help meet
these requirements successfully.

8/16/2015

Daniel L Luksetich 5

Presented at SQLAdria

A businesses' relationship with its customers can change over time. It’s quite simple to
maintain “current” information about the state of a customer’s account, but what about
where their account was a certain point in time? What if the customer wants to change
their relationship with the business, but not for another six months? How can that
information be stored?

The answer is to include a set of dates or times associated with a set of data. This period of
time, called an application-period or business period reflects a period in time in which the
business data was in effect or active. This time period becomes part of the key of the data,
and thus a database table can hold many rows for a certain customer or account depending
upon the number of application-periods.

8/16/2015

Daniel L Luksetich 6

Presented at SQLAdria

Without temporal data storage only the current active data could be stored within a
database table. This can lead to some difficulties and confusion as one can see what the
current data looks like, but not what it looked like 6 months ago, or even at some point in
the future. A temporal design overcomes these limitations and so when a change occurs to
the business data in a way that is significantly meaningful to the relationship between the
business and the customer then that change is added to the database, but does not replace
the data that already existed. Business rules, reflected in the application-period, now
dictate when that piece of data was or is active.

8/16/2015

Daniel L Luksetich 7

Presented at SQLAdria

In addition to the need to keep business relative information over different active periods
of time there is also the need to record all physical changes that are made to data over
time. This need is fueled by an ever increasing amount of regulation that forces a business
to keep a detailed audit of any changes made to data. In addition, the lower cost of data
storage encourages businesses to store all data as it changes over time in order to learn
more about what their customers are doing. The vast storage of data can be analyzed to
determine specific patterns of data change, which can ultimately be used to improve
marketing or offer better and more customized services.

8/16/2015

Daniel L Luksetich 8

Presented at SQLAdria

I’ve worked with several large database customers that had a requirement to store large
quantities of historical information for a variety of reasons. Experience and testing showed
that as the size of a table increased the database engine experienced some performance
challenges. Such things as table maintenance (REORG, COPY, etc.) became more expensive.
Inserting data into large indexes can get relatively more expensive, and scanning large
tables for various data conditions can be very expensive. In some situations it was
beneficial to separate current and historical information into separate data tables. This is
especially true if the majority of the business activity involves the most recent image of the
data, and transaction volumes are relatively high. In this case a temporal design that
maintains a current data image in a base table and historical information in a separate table
can be a performance improvement, as long as the majority of the read requests fall only
against the base table.

8/16/2015

Daniel L Luksetich 9

Presented at SQLAdria

There are challenges associated with temporal database designs. The most significant of
these challenges revolves around the amount of programming involved with the proper
maintaining the data in the database. Simple changes to data can become seriously
complicated when the change is relative to time. Care must be involved in avoiding time
period overlaps that can lead to confusion as to which piece of data is currently in effect.
Referential integrity can become a seriously complex issue when various relationships have
to be maintained over time. Querying the data can also become seriously more complex as
a time component has to be used, or perhaps a determination as to which table to query
can come into play.

Before the automated features of DB2 temporal tables this all had to be done
programmatically. Performance and accuracy could be seriously compromised if this was
not done correctly.

8/16/2015

Daniel L Luksetich 10

Presented at SQLAdria

11 Daniel L Luksetich

8/16/2015 Presented at SQLAdria

We have always had some level of automation built into the DB2 database engine. Strong
typing, referential integrity, and triggers are all examples of database automation.

Temporal tables take this concept of database automation even further by basically taking
an entire portion of application logic and placing it in a relatively simple table structure
with seamless automation built in. Application developers can incorporate a time
dimension in their design without having to code for the maintenance of the time factor,
and can rely on DB2 to maintain the proper consistency of their time dependent data. They
will still have to consider time as they read their data, but the maintenance of the time
dimension is automated within DB2.

There are two types of DB2 temporal tables, application-period and system-period
temporal tables. The application-period temporal tables are useful for the management of
data that is active during a certain time period, such has insurance policy information, and
allows data to be staged (active in the future), current, and historical in nature. The system-
period temporal tables are useful for tracking physical changes to data values, which makes
them great for auditing and/or transaction history, and thus important for compliance and
quality control and analytics.

8/16/2015

Daniel L Luksetich 12

Presented at SQLAdria

I’ve worked on several database projects that involved the use of triggers. The great
thing about triggers is that they can be used to replace large sections of application
logic. I’ve used triggers to capture database changes and propagate them to audit
tables, perform denormalizations on the fly, and aggregate data to summary tables.
Days or weeks of application programming and testing were replaced with just a
few hours to set up and test the triggers. Another great thing was that after the
process was no longer needed a simple DROP of the triggers removed that process
without an application program having to change a single line of code.

DB2 can automatically take this concept of replication via triggers even further with
temporal tables. This includes maintaining the time periods, moving data to history
tables, and building period specific predicates.

8/16/2015

Daniel L Luksetich 13

Presented at SQLAdria

An application-period temporal table is a table that has been defined with the
appropriate time columns along with the specification of a business period, and can
be useful for such things as reference and code tables where descriptions will
change over time, or for more involved applications such as the active period of a
specific insurance policy. The business period is created via the inclusion of a
“PERIOD BUSINESS_TIME” clause that identifies the start and end time columns.
These columns can be DATE or TIMSTAMP data types.

8/16/2015

Daniel L Luksetich 14

Presented at SQLAdria

When you define the business period for the table DB2 will automatically generate
an implicit table check constraint that ensures the start time column value for a row
is less than the end time column for that row. The application is still responsible for
setting the values for the start and end time columns when new data is inserted
into the table. The application can also update start and end time columns.
However, DB2 will control the data, including start and end times, when time
relevant updates and deletes are applied. Optionally, you can also define a unique
constraint and/or index on the table that includes the business period. This optional
definition will ensure that the business periods do not overlap across rows in the
table.

8/16/2015

Daniel L Luksetich 15

Presented at SQLAdria

A system-period temporal table is a table that has been defined with the
appropriate timestamp columns along with the specification of a system period,
and can be useful when all changes to a table need to be tracked with a retained
history to fulfill auditing or compliance requirements. The system period is created
via the inclusion of a “PERIOD SYSTEM_TIME” clause that identifies the start and
end timestamp columns. When you define a system period for a table DB2 is in
control of the start and end timestamps, and the timestamps reflect the state of the
data for the time specified. Within the base table only data that is currently
effective is represented. Optionally, you can define a history table and associate it
to the base table. Any changes to data then result in before images of the changed
data automatically replicated to the history table, with appropriate updates to the
timestamps in both the base and history tables.

8/16/2015

Daniel L Luksetich 16

Presented at SQLAdria

When you define a system-period temporal table DB2 is completely in control of the start
and end timestamps. The timestamps reflect the period of time in which the data is
current, and are not part of the primary key. This history table is optional, but when
defined and related to the base table DB2 will automatically propagate “before” images of
any data that changes to the history table and include the proper start and end
timestamps.

8/16/2015

Daniel L Luksetich 17

Presented at SQLAdria

An application-period and system-period design can be incorporated into a single
table making what is known as a bi-temporal table. This design gives you all the
flexibility and power to combine both the business period and system period
controls into a single table. We won’t cover bi-temporal in this presentation.
However, the features of each application-period and system-period can be
assumed in a bi-temporal design.

8/16/2015

Daniel L Luksetich 18

Presented at SQLAdria

19 Daniel L Luksetich

8/16/2015 Presented at SQLAdria

History table, table space, and index design have to be considered for system-
period temporal designs. Unlike its base table counterpart, the history table will
actually be an insert-only table. With that in mind, you may want to consider an
alternate physical design of the history table that favors a higher level of
performance for inserts depending upon the frequency of change to the base table.
If the base table experiences a high frequency of updates and/or deletes some
history table design considerations would be to make the history table APPEND
ONLY and/or the table space MEMBER CLUSTER, and using a larger index page size
than 4K to reduce the frequency of index page splits. Frequent REORGs to the
history table or index are very important when there is high insert activity, resulting
from updates to the base table, regardless of the physical design. If there are also
frequent reads from the history table then the REORGs become even more
important in that you’ll want to respect the clustering that is meaningful for the
readers.

8/16/2015

Daniel L Luksetich 20

Presented at SQLAdria

Time based referential integrity is currently not supported by DB2. So, while you can
define a primary key on an application-period temporal table, you cannot establish
relationships with other tables. Since the whole point of application-period
temporal tables is to add a time component to what was otherwise a primary key
this adds some considerations and complexity to a database design that utilizes
application-period temporal tables.

Setting up database enforced referential integrity for system-period temporal tables
is more traditional and straight forward. Since the system-period columns are not
part of the primary key, and there is still only one row per primary key, then
tradition parent-child relationships can be enforced for the base table.

8/16/2015

Daniel L Luksetich 21

Presented at SQLAdria

One solution to the challenge of database enforced referential integrity for an
application-period temporal table is to establish separate key tables that support
the database enforced referential integrity, while their application-period temporal
children support the storage of the detailed elements.

8/16/2015

Daniel L Luksetich 22

Presented at SQLAdria

23 Daniel L Luksetich

8/16/2015 Presented at SQLAdria

With an application-period temporal table the changes to the span in time in which
a row is active is controlled both by the application and by the database. When
making changes to data we can specify start and end times for our data values since
the application is ultimately in control of these values. For example, we can change
the end date of the data for ACTNO 10 in our ACT table to make the value expire at
the end of 2012.

In addition to application provided start and end times, the database can also
control the active time range for a key value dependent upon the updates and
deletes that are performed. DB2 has provided an extension to the SQL syntax to
allow a time specification for temporal modifications to data in the form of the FOR
PORTION OF clause. This clause allows to you specify the period in time in which a
row for the non-time key columns is active. So, for our data (notice I didn’t say row)
represented by the ACTNO 10 we can start a new representation of the data for a
future period of time. Imagine that beginning in June of 2012 this ACTNO will
represent something called “MANAGE/ADVISE2”.

8/16/2015

Daniel L Luksetich 24

Presented at SQLAdria

You can execute normal insert and update statements, but if the unique or primary
key of the table includes the business time then your insert can add a row for an
already existing non-time based key value and a delete could remove multiple rows
representing different time ranges for a value. Our ACT table has a non-time key
column of ACTNO and then the time duration as part of its unique key. Inserts,
updates, and deletes will have to consider the time duration.

8/16/2015

Daniel L Luksetich 25

Presented at SQLAdria

In addition to application provided start and end times, the database can also
control the active time range for a key value dependent upon the updates and
deletes that are performed. DB2 has provided an extension to the SQL syntax to
allow a time specification for temporal modifications to data in the form of the FOR
PORTION OF clause. This clause allows to you specify the period in time in which a
row for the non-time key columns is active. So, for our data (notice I didn’t say row)
represented by the ACTNO 10 we can start a new representation of the data for a
future period of time. Imagine that beginning in June of 2012 this ACTNO will
represent something called “MANAGE/ADVISE2”.

This update will result in the addition of a row for ACTNO 10 as well as an update
such that the data for the two new time periods are properly represented.

8/16/2015

Daniel L Luksetich 26

Presented at SQLAdria

With a system-period temporal tables the start and end timestamps are out of the
control of the application and completely controlled by the data server. Inserts add
data to the base table, updates modify data in the base table, and deletes remove
data from the base table. Only updates will result in the changing of start
timestamps in the base table, and the end timestamp will always be the maximum
value. It’s only when a history table is associated with the base table that things
become more interesting. Inserts into the base table will not result in any activity to
the history table. However, any update or delete will result in “before” image rows
being propagated automatically to the history table. In addition, the end timestamp
value for the propagated row will be updated to reflect the end period for the data
values of the row.

8/16/2015

Daniel L Luksetich 27

Presented at SQLAdria

28 Daniel L Luksetich

8/16/2015 Presented at SQLAdria

29 Daniel L Luksetich

8/16/2015 Presented at SQLAdria

The end timestamp value for the propagated row will be updated to reflect the end
period for the data values of the row. For example, if we change the value of the
LASTNAME column of employee ‘000010’ as shown here, a row will be inserted into
the history table to reflect the condition of the data previous to the update.
Likewise, a delete to the DEPT table for DEPTNO ‘J22’ will result in the row for that
department removed from the base table, and a row reflecting the image of the
row up to the point the delete in the DEPT_HIST table.

8/16/2015

Daniel L Luksetich 30

Presented at SQLAdria

31 Daniel L Luksetich

8/16/2015 Presented at SQLAdria

Temporal tables can be accessed via normal SQL statements, and do not require a
time specification when accessing them.

8/16/2015

Daniel L Luksetich 32

Presented at SQLAdria

Queries against temporal tables can also contain a clause called a period-
specification. This period-specification can be for a specific point in time, or for a
range of time values. However, it is important to know how the queries will behave
both with and without the time specification.

8/16/2015

Daniel L Luksetich 33

Presented at SQLAdria

Let’s take a look at a BUSINESS_TIME specification for application-period temporal
tables. It is important to note here that the business start and end times for a row
in an application-period temporal table are inclusive for the start time and exclusive
for the end time. So, if a row has a range of ‘2012-06-01 to ‘2012-12-31’, as with our
ACT table example, then the data is active inclusively for June 1st through December
30th. So, if you consider the ACT table data then you can assume that a query with
a period-specification as of ‘2012-12-31’ will return no rows, while one that
specifies ‘2012-12-30’ will return the single row that is active for that date.

Also, notice that the period-specification is transformed by the query
transformation component of DB2 into a compound range predicate.

8/16/2015

Daniel L Luksetich 34

Presented at SQLAdria

35 Daniel L Luksetich

8/16/2015 Presented at SQLAdria

In addition to the “AS OF” period-specification you can query based upon a range of
time. There are two choices for specifying range values, the “FROM” and
“BETWEEN” clauses. They differ slightly in that the FROM is strictly locating data
that was active in the time that intersects the specification, and BETWEEN is
locating data that was active in the time that overlaps the specification. To put it in
straight forward terms, FROM will return any rows where a start value for a row is
less than the second value specified and the end value for a row is greater than the
first value specified. BETWEEN will return any rows where a start value for a row is
less than or equal to the second value specified and the end value for the row is
greater than the first value specified. Notice that for BETWEEN the end value still
has to be greater than the first value specified. This is because the end time for a
row is exclusive.

 It’s important to note this behavior and make sure that developers have the right
knowledge and training to be able to accurately code period-specifications. If it’s
too much to know, or two complicated to let the database do it, then you can
always code the predicates against the time value columns yourself! This could
allow you to break the rules and treat the end time value as inclusive in your
queries.

8/16/2015

Daniel L Luksetich 36

Presented at SQLAdria

37 Daniel L Luksetich

8/16/2015 Presented at SQLAdria

System-period temporal base tables and history tables can each be accessed
directly via normal SQL. From a performance perspective this is the preferred way
to access the tables. If you need current data then you read from the base table
directly. If you want historical data then you can read from the history table directly,
or from both the base and history tables. You can also include a period-specification
in your SQL statement against the base table, much in the same way as is specified
for an application-period temporal table. The same rules apply for the various
period-specification clauses as with the application-period temporal tables I
discussed earlier. The big difference here is that any time travel query against a
system-period temporal table will generate access against both the base and history
table. The query here will return data from our employee history table when the AS
Of period-specification includes a point in time prior to our update.

8/16/2015

Daniel L Luksetich 38

Presented at SQLAdria

Notice that in the transformed query what was written to appear as single table
access was rewritten as a union of accesses to both the base and history table. This
will happen even for queries in which the AS OF period-specification includes the
CURRENT TIMESTAMP value. Therefore, your applications that deal with system-
period time travel queries should perhaps only use them for truly historical
requirements. For current period requirements only the base table access without a
system-period specification will deliver optimal performance. There may be a
change in a future release of DB2 that will allow current time queries to prune
access to the history table, but for now you’ll have to code for it yourself.

8/16/2015

Daniel L Luksetich 39

Presented at SQLAdria

The transformation of a query with a system-period specification into a union of the
base and history table can become more complicated when we consider the joining
of two tables. No one would think much about a join between the DEPT and EMP
tables, and can assume two tables are accessed in the query, but if you include a
SYSTEM_TIME period-specification for the tables in the query then the number of
tables accessed increases dramatically. The number of tables accessed in a time
travel join of system-period temporal tables, if each table reference contains a
SYSTEM_TIME period-specification, is equal to (2𝑛) × 𝑛 where n is the number of
tables in the join. Therefore the join of DEPT to EMP, each with their own period-
specification, results in 8 table accesses. A similar three table join will result in 24
table accesses, and a similar 4 table join will result in 64 table accesses. It therefore
goes without saying that joining system-period temporal tables using SYSTEM_TIME
period-specifications should be done carefully or perhaps avoided when
performance is the primary concern.

8/16/2015

Daniel L Luksetich 40

Presented at SQLAdria

8/16/2015

Daniel L Luksetich

Presented at SQLAdria

Making an application time sensitive allows for the creation of two access paths for every
query coded against temporal tables that does not have a period-specification. Then the
special registers control which access path is used at run time.

8/16/2015

Daniel L Luksetich

Presented at SQLAdria

Using these special registers allows for only one query to be coded against a temporal
table. Whether or not that query is a normal query or time travel query is then dependent
upon the special register setting. Setting the special register to the null value will cause the
query to execute as if there was no period-specification, and any valid non-null value will
cause the query to execute as an “as of” time travel query.

During statement compile time (prepare for dynamic or bind for static) an extended section
is added to the statement access path. So, for queries that do not specify a period-
specification DB2 will build two sections for the table access; one without the UNION ALL
and temporal predicates, and a second with the UNION ALL and temporal predicates. This
will only happen if the package bind parameter SYSTIMESENSITIVE is set to YES, which is
the default.

8/16/2015

Daniel L Luksetich

Presented at IOD

DB2 temporal tables are an outstanding database automation feature that can
replace significant amounts of application programming. Establishing and
maintaining application-period, system-period, or bi-temporal tables is quite
straight forward and easy to do. With DB2 managing the integrity of the temporal
data, the application is free from the responsibility of properly updating and reading
temporal data. However, it is import to take the time to learn exactly how period-
specifications are interpreted by query transformation to be certain that these
specifications are coded correctly in our application. In addition, performance
considerations are critical when using queries containing period-specifications
against system-period temporal tables, especially for joins. Utilizing database
enforced referential integrity with temporal tables can be a little more involved that
with a normal database design as well. Testing and understanding how the tables
work is critical for both the DBAs and application developers.

8/16/2015

Daniel L Luksetich 44

Presented at SQLAdria

DanL Database Consulting

• Long and short term consulting
• Experience on multiple platforms (z/OS, AIX, UNIX, Windows, Linux)
• DB2 SQL Education (multi-platform)
• DB2 application and database design
• DB2 performance audits

Daniel L Luksetich

8/16/2015 Presented at SQLAdria

